References

1      Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019-20 season of mega-fires. Global Change Biology, doi:10.1111/gcb.14987 (2020).
2      Beer, T., Gill, A. M. & Moore, P. H. R. Australian bushfire danger under changing climatic regimes. in: Greenhouse: Planning for Climatic Change   (ed G.I. Pearman)  421-427 (CSIRO Publishing, 1988).
3      Garnaut, R. The Garnaut Climate Change Review: Final Report. (2008).
4      IPCC. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.  (2019).
5      Reisinger, A. et al. Australasia. in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects.Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.   (eds V.R. Barros et al.) Ch. 25, 1371-1438 (Cambridge University Press, 2014).
6      Jones, M. W. et al. Climate change increases the risk of wildfires. (University of East Anglia, https://sciencebrief.org/briefs/wildfires, 2020).
7      Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography 19, 145-158, doi:10.1111/j.1466-8238.2009.00512.x (2010).
8      Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophysical Research Letters 46, 326-336, doi:10.1029/2018GL080959 (2019).
9      Sukumar, R., Arneth, A., Kurz, W., Sirin, A. & Verchot, L. Fire and climate change (Cross-Chapter Box 3). in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems   (eds P.R. Shukla et al.)  (2019).
10    Archibald, S., Roy, D. P., Van Wilgen, B. W. & Scholes, R. J. What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology 15, 613-630, doi:10.1111/j.1365-2486.2008.01754.x (2009).
11    IPCC. Summary for Policymakers. in: Climate  Change 2013:  The Physical Science  Basis.Contribution of Working  Group I to the Fifth Assessment  Report of the Intergovernmental Panel  on Climate Change   (eds T.F. Stocker et al.)  (Cambridge University Press, 2013).
12    Bureau of Meteorology. State of the Climate. (www.bom.gov.au/state-of-the-climate, 2018).
13    IPCC. Summary for Policymakers. in: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty   (eds V. Masson-Delmotte et al.)  32 pp. (World Meteorological Organization, 2018).
14    Bureau of Meteorology. Annual climate statement 2019. (http://www.bom.gov.au/climate/current/annual/aus/, 2020).
15    Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nature Geoscience 7, 583-587, doi:10.1038/ngeo2201 (2014).
16    Sniderman, J. M. K. et al. Southern Hemisphere subtropical drying as a transient response to warming. Nature Climate Change 9, 232-236, doi:10.1038/s41558-019-0397-9 (2019).
17    Penman, T.D. et al. Examining the relative effects of fire weather, suppression and fuel treatment on fire behaviour – A simulation study. Journal of Environmental Management 131, 325-333, doi:10.1016/j.jenvman.2013.10.007 (2013).
18    Dowdy, A. J. Climatological Variability of Fire Weather in Australia. Journal of Applied Meteorology and Climatology 57, 221-234, doi:10.1175/JAMC-D-17-0167.1 (2018).
19    Natural Environmental Science Program. Bushfires and climate change in Australia. (http://nespclimate.com.au/wp-content/uploads/2019/11/A4_4pp_brochure_NESP_ESCC_Bushfires_FINAL_Nov11_2019_WEB.pdf, 2019).
20    Clarke, H., Lucas, C. & Smith, P. Changes in Australian fire weather between 1973 and 2010. International Journal of Climatology 33, 931-944, doi:10.1002/joc.3480 (2013).
21    Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Climatic Change 139, 85-99, doi:10.1007/s10584-016-1811-1 (2016).
22    Phillips, N. and Nogrady, B. The race to decipher how climate change influenced Australia’s record fires. Nature, 577, 610-612. doi:10.1038/d41586-020-00173-7 (2020).
23    Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection
risk factors for Australian wildfires. Scientific Reports 9, 10073, doi:10.1038/s41598-019-46362-x (2019).
24    CSIRO and Bureau of Meteorology. Climate change in Australia information for Australia’s natural resource management regions: Technical Report. (www.climatechangeinaustralia.gov.au/en/publications-library/technical-report/, 2015).
25    Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Australian Forestry 79, 1-14, doi:10.1080/00049158.2015.1127197 (2016).
26    Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M. M. & Clarke, H. Biogeographical variation in the potential effectiveness of prescribed fire in south-eastern Australia. Journal of Biogeography 42, 2234-2245, doi:10.1111/jbi.12579 (2015).
27    Clarke, H. et al. Climate change effects on the frequency, seasonality and interannual variability of suitable prescribed burning weather conditions in south-eastern Australia. Agricultural and Forest Meteorology 271, 148-157, doi:10.1016/j.agrformet.2019.03.005 (2019).
28    McRae, R. H. D., Sharples, J. J. & Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 15, 417-428, doi:10.5194/nhess-15-417-2015 (2015).
29    Dowdy, A. J. & Pepler, A. Pyroconvection Risk in Australia: Climatological Changes in Atmospheric Stability and Surface Fire Weather Conditions. Geophysical Research Letters 45, 2005-2013, doi:10.1002/2017GL076654 (2018).
30    Di Virgilio, G. et al. Climate Change Increases the Potential for Extreme Wildfires. Geophysical Research Letters 46, 8517-8526, doi:10.1029/2019GL083699 (2019).
31    Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLOS ONE 14, e0222328, doi:10.1371/journal.pone.0222328 (2019).
32    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 4, 111-116, doi:10.1038/nclimate2100 (2014).
33    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change 5, 132-137, doi:10.1038/nclimate2492 (2015).
34    IPCC. Summary for Policy Makers. in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate   (eds H.-O. Pörtner et al.)  (2019).
35    Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature (2020, in press).
36    Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. Recent intensification of tropical climate variability in the Indian Ocean. Nature Geoscience 1, 849-853, doi: 810.1038/ngeo1357 (2008).
37    Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophysical Research Letters 36, doi:10.1029/2009GL037604 (2009).
38    Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophysical Research Letters 36, doi:10.1029/2009GL039902 (2009).
39    Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? Geophysical Research Letters 36, L04706, doi:10.1029/2008GL036801 (2009).
40    Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254-258, doi:10.1038/nature13327 (2014).
41    Cai, W. et al. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nature Communications 9, 1419, doi:10.1038/s41467-018-03789-6 (2018).
42    Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change 4, 564-569, doi:10.1038/nclimate2235 (2014).
43    Dätwyler, C. et al. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium. Climate Dynamics 51, 2321-2339, doi:10.1007/s00382-017-4015-0 (2018).
44    Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4, 741-749, doi:10.1038/ngeo1296 (2011).
45    Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nature Geoscience 12, 896-901, doi:10.1038/s41561-019-0456-x (2019).
46    Hennessy, K. et al. Australia and NewZealand. in: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Reportof the Intergovernmental Panel on Climate Change   (eds M.L. Parry et al.)  507-540 (Cambridge University Press, 2007).
47    Garnaut, R. Projecting Australian climate change. in: The Garnaut Climate Change Review: Final Report. Ch. 5, 105–120 (2008).

Read the full statement, summary statement, or view the co-signatories.

<span>%d</span> bloggers like this: